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Numerical study of oscillatory crack propagation through a two-dimensional crystal
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We study fracture propagation through a two-dimensional crystal induced by thermal stress by using
numerical simulations of a deterministic spring model. Controlling the applied thermal stress, we find
several remarkable phases of crack patterns including straight, oscillatory, and branching morphology.
We also determine the wavelength of the oscillating cracks at the transition points in accord with experi-
ments by Yuse and Sano [Nature (London) 362, 329 (1993)].

PACS number(s): 62.20.Mk, 46.30.Nz, 83.50.Tq

The study of crack propagation would have two
different major goals. One is for fast crack formation
whose time scale is comparable to atomic vibrations and
the other is for slow or equilibrium cracks. Equilibrium
crack propagation has been studied intensively in en-
gineering fields of science, especially to design desirable
constructions of materials. It has also received attention
as a problem of physics of pattern formation in complex
systems [1-3].

Recently Yuse and Sano [4] reported well-controlled
experiments on the equilibrium crack formation of glass
plates by applying thermal stress. They prepared very
thin glass plates and heated them up first. When the
plate was dipped into cool water, they found a variety of
propagating crack patterns with good reproducibility.
One of the most surprising and nontrivial results of their
experiment was the transition from straight cracks to os-
cillatory ones with a certain wavelength, which could be
regarded as a Hopf bifurcation. But the origin of the in-
stability of crack growth and the mechanism of the crack
pattern selection still has not been understood well
[5-7]. In this Rapid Communication we study a simple
spring network model to represent the elasticity of a
thermally stressed solid, being inspired by their experi-
ments.

Let us consider, first, elastic properties of a two-
dimensional simple square crystal with nearest-neighbor
and next-nearest-neighbor interactions. The force be-
tween the “atoms” in the crystal is assumeéd to be propor-
tional to the displacement from the neutral distance,
which is represented by Hookean springs with a spring
constant, where the springs can be freely rotated around
the atoms [8-11]. For simplicity we do not take into ac-
count the acoustic vibrations in the crystal at all, thus the
mass of the atoms was considered to be exactly zero. Let
k, be the spring constant for nearest-neighbor interaction
and k, for next nearest-neighbor interaction, where k,
and k, are related to the coefficients of elastic tensor C;,
for the two-dimensional crystal on the x-y plane [12].
Then one can easily obtain
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and the other coefficients are zero. Note that the lattice
constant of the spring network does not affect the elastic
characteristics in the two-dimensional system.

Thermal stress is applied to the crystal in the following
way as in the experiments we mentioned: Assuming the
steady-state thermal diffusion, the temperature T at each
spring is given by the following sigmoidal function of
vertical position y and time ¢:

T(,0)=— £ tanh{Bly —y0(0)]} ®

yo(t)=Vt 4)

where AT is the temperature difference applied between
the top and the bottom of the specimen, V the “dipping”
velocity of it into liquid. Here S is a constant comparable
to the inverse of the thermal diffusion length ~D /V (D
is the thermal diffusion constant). In numerical simula-
tions, we simplify Eq. (4) as y,=38y n, where n is the
number of iterative steps corresponding to time and 8y a
small number (typically one-tenth of the length of
springs). Although this T may not be the exact solution
of the temperature distribution in the experiment by
Yuse and Sano [4], one can expect that the details of T
are irrelevant to the results as long as T has an
exponential-like decay with the same thermal diffusion
length. Next, we assume the natural distances of the
springs to be a linear function of local temperature. Ac-
cording to the temperature, the equilibrium length a,(y)
of springs is determined as

ayg(y,n)=ay[1+aT(y,n)], (5)

where a is the lattice constant of the stress-free crystal
and a the thermal expansion coefficient. Since the
springs have a length, temperature is evaluated at the
middle point of each spring. Now we can calculate the
equilibrium configuration of the spring network making
use of a simple relaxation method. In our simulations,
relative error of the equilibrium position of nodes was
smaller than 1075,

Here we introduce a deterministic rule for breaking
springs (bonds), rather than stochastic rules [9,11], ac-
cording to the applied thermal stress. When the force
given on a spring exceeds a critical value, it breaks, i.e.,
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the corresponding spring constant changes to be zero
from k,; or k,, which can be regarded as a microscopic
interpretation of the failure criterion for equilibrium frac-
ture. Let f. be the critical force for breaking the bonds.
In the case of equilibrium crack, i.e., for quasistatic crack
propagation, f. should be related to the critical stress in-
tensity factor K§ of the crystal through f,/a,~Kft™1/?
where § is the distance from a crack tip comparable to
a,.

First, we have tested a couple of criteria for breaking
bonds in each iterative step as follows. Model I: “Cut the
bonds on which the force exceeds f..” Model II: “Cut
only one bond each time. If more than one bond has
stress larger than f,, break the one which has the max-
imum stress, then do the relaxation processes until no
breaking bond is found.” For the equilibrium crack we
are concerned with here, strictly speaking, these models
should yield the same results. In a finite resolution of
time and space, however, we found that the results
strongly depend on the rule we choose. Even when &y is
quite small, events might happen such that the stress
exceeds the critical value on several bonds at the same
time. Those events will have a significant effect on the
successive processes of breaking springs as a long time
memory. In this point of view, we took the latter (model
II) in the preceding analysis. The rule we used here can
be regarded as a limiting case of the noise reduction mod-
el which was studied previously in Ref. [13].

We can introduce a few dimensionless parameters in
this model: One is the ratio of thermal diffusion length
and W defined as

b=BW , (6)
and the other is the externally applied force:
S=aATEa,/f, , (7

where E is Young’s modulus which may depend on the
direction of the applied force. For the pressure parallel
to a unit vector n=(n,,n, ), one can easily show that
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P4
From the definitions, bS can be regarded as the dimen-
sionless thermal stress applied to the specimen, therefore
it should act as a control parameter in the system. The
only quantity related to the time-dependent behavior of
the system is the diffusion length 1/8.

Computer simulations were carried out for a rectangu-
lar shape with typically 32X 128 nodes. (See Fig. 1.) On
the boundary of the rectangles, there is no constraint on
the motion of nodes and no external pressure applied on
the sides. The number of nodes in the horizontal (x)
direction has been changed from 24 to 64. In the vertical
(y) direction we have up to 256 nodes. As material
specific constants, we choose k; =1 and k,=0.7, respec-
tively. Note that there are two different types of anisot-
ropy in this system: One is the anisotropy of the lattice it-
self, and the other is the elastic anisotropy which does
not vanish even in the continuum limit. Changing the ra-
tio of k, and k,, one can control the elastic anisotropy
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FIG. 1. Typical patterns obtained for several control param-
eters. Each 2D crystal consists of 32X 128 nodes. S=22.6.
Broken bonds of (a) straight (b=5.8), (b) oscillatory (b=7.0),
(c) branching (5=9.0), (d) two-parallel (b=9.3), and (e) three-
parallel (b =16) cracks are shown.

(the latter) and, as a result, preferred directions of crack
propagation. If k,/k,>2, one can expect that cracks
“prefer” to move in the x or y direction. Otherwise,
cracks will move more easily in the oblique direction to
the x and y axes. It is our future problem to investigate
the influence of the elastic anisotropy on the pattern
selection.

A tiny straight crack was prepared near the bottom
center of the crystal as the initial crack. For small b or S,
the initial crack does not grow at all. Increasing b or S,
the transition from nonpropagating crack to the straight
propagating crack takes place. The crack runs in the y
direction near the center of the plate even when the ini-
tial position of the crack is biased from the center. For
instance, when fixing S =22.6, the transition occurs at
b~5.8.

Increasing further those control parameters, i.e., with
stronger thermal stress, the straight crack becomes oscil-
latory with an apparent wavelength A. From a number of
independent simulations by changing b and S we obtained
the transition line which can be well represented by the
curve of bS =170 as shown in Fig. 2. The selected wave-
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FIG. 2. Transition line of oscillatory cracks (black rectan-
gles) from straight cracks (white rectangles) in the 5-S plane.
Dotted line represents the curve of bS =170.
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FIG. 3. Selected wavelength A at the transition point be-
tween straight and oscillatory crack formation versus the width
of crystal W.

length at the onset of the transition (see Fig. 3) is propor-
tional to the width of plates W as

A,=aW, a=0.30%0.05,

which seems to be independent of other parameters. This
gives very nice agreement with the experimental results
(a ~0.28) for glass plates in Ref. [4] and suggests that the
isotropic characteristics of glass are not important for the
oscillatory motion of crack tips. The obtained A has a
larger deviation probably because of the mismatching be-
tween lattice size and A to be selected.

After the transition it turned out that the wave form
became gradually irregular and the position of the crack
tip fluctuated around the middle part of the crystal in
spite of the completely deterministic calculations except
for numerical errors.

For larger b or S, a single crack becomes unstable
eventually, then branching of crack tips is observed. But,
as seen in Fig. 1(c), there is still only one main branch
spanning from bottom to top like trees. Just above the
branching crack region, we find two cracks running
simultaneously, dividing the plate into three parts whose
widths are almost the same as each other. Furthermore,
we found up to three parallel cracks by increasing the pa-
rameters. To be compared with the experimental phase
diagram [4], our model would be valid, at least qualita-
tively, in the parameter region even for very strong
thermal stress.

In the steady state of crack propagation, crack tips go
at some distances / ahead of the position where the
thermal gradient is maximum, i.e., at water level. In oth-
er words, the distance / is selected to make the stress at
the tip marginal. In Fig. 4(a) stress at a straight crack tip
is plotted by changing the vertical position of the tip for
b=7.0 and $=22.6. To obtain this plot, a straight crack
was prepared first, and then stress near the crack tip was
calculated numerically for many cases of the distance be-
tween the prepared crack and the water level. Since the
lattice size is not very small compared to the thermal
diffusion length 1/8~4.5, some tiny kinks are found in
the plot as a numerical artifact, although the curve
should be smooth. When [/ is small, which corresponds to
small thermal stress, o, is larger than 0,,. On the other
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FIG. 4. (a) Numerically obtained stress o, and o, at the tip
of the straight crack as a function of the distance / from the po-
sition of maximum thermal gradient. b=7.0, §=22.6. (b) Po-

sition of propagating crack versus control parameter b.
S=22.6.

hand, for larger [ than a critical length /., 0, becomes
dominant. As pointed out in Ref. [5], this may cause an
instability for the mode I crack propagation. According-
ly, in our simulations, the transition to oscillatory region
seems to take place when /=1 ~I_ as seen Fig. 4. But,
unfortunately, in our very limited resolution of space we
hardly compare I, and /. quantitatively. When the ap-
plied thermal stress is very large, / becomes rather small
since elastic energy can be dissipated by creating more
than one crack tip.

We would like to mention here the simulations per-
formed with periodic boundary conditions. In order to
make the two vertical sides of the rectangular crystal
identical, movement of the nodes interconnected with
springs is constrained on a cylinder of radius W /27w
whose thermal expansion coefficient is zero. Thus this
modeling does not represent a real three-dimensional cy-
lindrical crystal, because the radial shrinkage is not taken
into account. We obtained very similar propagating
cracks including straight, oscillatory, and branching pat-
terns as seen in free boundary cases. While oscillatory
behavior of propagating cracks was also found, the select-
ed wavelength was different and the direction of the
crack was tilted with a small angle. We obtained the
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wavelength A.;~0.5W from several runs of computer
simulations. However, it is unclear why such oscillation
of cracks is possible even in the periodic boundary condi-
tion which seems to give rise to no mechanism for turns
of cracks. That is, considering the symmetry of the
periodic boundary condition, a spiral rather than a wave
would be more natural to see.

Summarizing this Rapid Communication, we have per-.

formed computer simulations of two-dimensional crack
propagation by a deterministic spring network model.
We found that the spring network model does work suc-
cessfully for the fracture formation quasistatic cases even
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in a very large thermal stress region. The spring model
we used here gave nice agreement with the experimental
results for glass plates in the aspect of pattern selections.
In particular, the wavelength of cracks at the transition
between straight and oscillatory crack formation was
determined by the width of a two-dimensional crystal in a
linear function, which was also in accord with the experi-
ment.
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